Trả lời câu hỏi trong Giải bài 16 Tam giác cân, đường trung trực của đoạn thẳng – Toán 7 KN



1. TAM GIÁC CÂN VÀ TÍNH CHẤT

Câu hỏi: Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.

Hướng dẫn giải:

Tam giác ABD cân tại đỉnh A có:

  • AB, AD là 2 cạnh bên
  • BD là cạnh đáy
  • $\widehat{B}$; $\widehat{D}$ là 2 góc ở đáy
  • $\widehat{A}$ là góc ở đỉnh

Tam giác ADC cân tại A có:

  • AC, AD là 2 cạnh bên
  • DC là cạnh đáy
  • $\widehat{C}$; $\widehat{D}$ là 2 góc ở đáy
  • $\widehat{A}$ là góc ở đỉnh

Tam giác ABC cân tại A có:

  • AB, AC là 2 cạnh bên
  • BC là cạnh đáy
  • $\widehat{C}$; $\widehat{B}$là 2 góc ở đáy
  • $\widehat{A}$là góc ở đỉnh

Hoạt động 1: Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.

a. Chứng minh rằng ΔABD = ΔACD theo trường hợp cạnh – cạnh – cạnh.

b. Hai góc B và C của tam giác ABC có bằng nhau không?

Hướng dẫn giải:

a. Xét hai tam giác ABD và ACD có:

=> ΔABD = ΔACD (c.c.c)

b. Từ kết quả câu a.  ΔABD = ΔACD => $\widehat{B}$ = $\widehat{C}$ ( 2 góc tương ứng)

Hoạt động 2: Cho tam giác MNP có $\widehat{M}$= $\widehat{N}$.  Vẽ tia phân giác PK của tam giác MNP (K∈MN).

Chứng minh rằng:

a. $\widehat{MKP}$= $\widehat{NKP}$

b.  $\Delta$MPK= $\Delta$NPK

c. Tam giác MNP có cân tại PP không?

Hướng dẫn giải:

a. Áp dụng định lý tổng 3 góc trong một tam giác bằng $180^{\circ}$. Ta suy ra

  • $\widehat{NKP}$ = $180^{\circ}$- $\widehat{PMK}$ – $\widehat{MPK}$
  • $\widehat{NKP}$ = $180^{\circ}$- $\widehat{PNK}$ – $\widehat{NPK}$

Theo giải thuyết thì : 

$\widehat{PMK}$ = $\widehat{PNK}$ và $\widehat{MPK}$ = $\widehat{NPK}$ ( PK là tia phân giác của tam giác MNP)

=> $\widehat{NKP}$ = $\widehat{NKP}$

b. Xét $\Delta$MPK vả $\Delta$NPK, ta có :

  • $\widehat{NKP}$ = $\widehat{NKP}$
  • PK chung
  • $\widehat{PMK}$ = $\widehat{PNK}$

=>$\Delta$MPK = $\Delta$NPK (g-c-g)

c. Từ b suy ra MP=NP => $\Delta$PMN cân tại 

Luyện tập 1: Tính số đo các góc và các cạnh chưa biết của tam giác DEF trong Hình 4.62.

Hướng dẫn giải:

$\Delta$DEF có 2 cạnh FE= FD => là tam giác cân tại F

=> $\widehat{FED}$ = $\widehat{FDE}$ = $60^{\circ}$ ( 2 góc ở đáy)

Áp dụng định lý tổng 3 góc trong 1 tam giác bằng $180^{\circ}$ => $\widehat{DFE}$= $180^{\circ}$ – $60^{\circ}$- $60^{\circ}$ = $60^{\circ}$

=> Như vậy $\Delta$DEF cũng cân tại D => DE= DF = 4cm

Thử thách nhỏ: Một tam giác có gì đặc biệt nếu thoả mãn một trong các điều kiện sau:

a. Tam giác có ba góc bằng nhau?

b. Tam giác cân có một góc bằng 60°?

Hướng dẫn giải:

a. Tam giác có ba góc bằng nhau : là tam giác đều

b. Tam giác cân có một góc bằng 60° : là tam giác đều

2. ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG

Hoạt động 3: Đánh dấu hai điểm A và B nằm trên hai mép tờ giấy A4, nối A và B để được đoạn thẳng AB. Gấp mảnh giấy lại như Hình 4.63 sao cho vị trí các điểm A và B trùng nhau. Mở mảnh giấy ra, kẻ một đường thẳng d theo nếp gấp.

a. Gọi O là giao điểm của đường thẳng d và AB. O có là trung điểm của đoạn thẳng AB không?

b. Dùng thước đo góc, kiểm tra đường thẳng d có vuông góc với AB không?

Hướng dẫn giải:

a. O là trung điểm của đoạn thẳng AB

b. Dùng thước đo góc ta thấy d có vuông góc với AB.

Câu hỏi: Trong Hình 4.64, bạn Lan vẽ đường trung trực của các đoạn thẳng. Theo em, hình nào Lan vẽ đúng?

Hướng dẫn giải:

Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó

=> hình a) Lan vẽ đúng.

Hoạt động 4: Trên mảnh giấy trong HĐ3, lấy điểm M bất kì trên đường thẳng d. Dùng thước thẳng có vạch chia kiểm tra xem AM có bằng BM không (H.4.65).

Hướng dẫn giải:

Lấy điểm M bất kì trên đường thẳng d dùng thước kiểm tra ta thấy AM bằng BM.

Luyện tập 2: Cho M là một điểm nằm trên đường trung trực của đoạn thẳng AB. Biết AM = 3 cm và $\widehat{MAB} = 60^{\circ}$ (H.4.67). Tính BM và số đo góc MBA.

Hướng dẫn giải:

Vì M là một điểm nằm trên đường trung trực của đoạn thẳng AB nên MA=MB=3cm.

⇒ Tam giác MAB cân tại M.

$\widehat{A}$= $\widehat{B}$  = $60^{\circ}$ => $\widehat{AMB}$ = $180^{\circ}$ – $60^{\circ}$ – $60^{\circ}$ = $60^{\circ}$

=> Tam giác MAB là tam giác đều=> AB= AM = 3cm

 



Source link