Fabrication of a biological metal–organic framework based superhydrophobic textile fabric for efficient oil/water separation


  • Cao, C. & Cheng, J. Fabrication of robust surfaces with special wettability on porous copper substrates for various oil/water separations. Chem. Eng. J. 347, 585–594 (2018).

    CAS 
    Article 

    Google Scholar 

  • Hu, Y. et al. Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation. Chem. Eng. J. 322, 157–166 (2017).

    CAS 
    Article 

    Google Scholar 

  • Qiu, L., Zhang, J., Guo, Z. & Liu, W. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation. Sep. Purif. Technol. 273, 118994 (2021).

    CAS 
    Article 

    Google Scholar 

  • Yin, Z. et al. Preparation of superhydrophobic magnetic sawdust for effective oil/water separation. J. Clean. Prod. 253, 120058 (2020).

    CAS 
    Article 

    Google Scholar 

  • Thasma Subramanian, B., Alla, J. P., Essomba, J. S. & Nishter, N. F. Non-fluorinated superhydrophobic spray coatings for oil-water separation applications: An eco-friendly approach. J. Clean. Prod. 256, 120693 (2020).

    CAS 
    Article 

    Google Scholar 

  • Baig, U., Matin, A., Gondal, M. A. & Zubair, S. M. Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants. J. Clean. Prod. 208, 904–915 (2019).

    CAS 
    Article 

    Google Scholar 

  • Miao, G. et al. Ag/polydopamine-coated textile for enhanced liquid/liquid mixtures separation and dye removal. iScience 25, 104213 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, J. et al. Robust hydrogel coating with oil-repellent property in air, water, and oil surroundings. ACS Appl. Mater. Interfaces 12, 49138–49145 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klasson, K. T. et al. Modification of a centrifugal separator for in-well oil-water separation. Sep. Sci. Technol. 40, 453–462 (2005).

    CAS 
    Article 

    Google Scholar 

  • Song, J. L. et al. Barrel-shaped oil skimmer designed for collection of oil from spills. Adv. Mater. Interfaces 2, 1–8 (2015).

    CAS 

    Google Scholar 

  • Roodbari, N. H., Badiei, A., Soleimani, E. & Khaniani, Y. Tweens demulsification effects on heavy crude oil/water emulsion. Arab. J. Chem. 9, S806–S811 (2016).

    CAS 
    Article 

    Google Scholar 

  • Alabresm, A., Chen, Y. P., Decho, A. W. & Lead, J. A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. Sci. Total Environ. 630, 1292–1297 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Khan, J. A., Al-Kayiem, H. H., Aleem, W. & Saad, A. B. Influence of alkali-surfactant-polymer flooding on the coalescence and sedimentation of oil/water emulsion in gravity separation. J. Pet. Sci. Eng. 173, 640–649 (2019).

    CAS 
    Article 

    Google Scholar 

  • Peng, Y., Liu, T., Gong, H. & Zhang, X. Dehydration of emulsified lubricating oil by three fields: swirl centrifugal field, pulse electric field and vacuum temperature field. Appl. Petrochemical Res. 6, 389–395 (2016).

    CAS 
    Article 

    Google Scholar 

  • An, Q. et al. A facile method to fabricate functionally integrated devices for oil/water separation. Nanoscale 7, 4553–4558 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, J. & Liu, S. Fabrication of water-repellent double-layered polydopamine/copper films on mesh with improved abrasion and corrosion resistance by solution-phase reduction for oily wastewater treatment. Sep. Purif. Technol. 233, 116005 (2020).

    CAS 
    Article 

    Google Scholar 

  • Deng, Y. et al. Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation. Chem. Eng. J. 405, 127004 (2021).

    CAS 
    Article 

    Google Scholar 

  • Moatmed, S. M., Khedr, M. H., El-Dek, S. I., Kim, H. Y. & El-Deen, A. G. Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. J. Environ. Chem. Eng. 7, 103508 (2019).

    CAS 
    Article 

    Google Scholar 

  • Lü, X. & Lin, H. Facile fabrication of robust superhydrophobic/superoleophlic Cu coated stainless steel mesh for highly efficient oil/water separation. Sep. Purif. Technol. 256, 117512 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chauhan, P., Kumar, A. & Bhushan, B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J. Colloid Interface Sci. 535, 66–74 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, W., Li, J., Zhou, P., Zhu, L. & Tang, H. Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chem. Eng. J. 327, 849–854 (2017).

    CAS 
    Article 

    Google Scholar 

  • Xu, P. & Li, X. Fabrication of TiO2/SiO2superhydrophobic coating for efficient oil/water separation. J. Environ. Chem. Eng. 9, 105538 (2021).

    CAS 
    Article 

    Google Scholar 

  • Li, X., Cao, M., Shan, H., Handan Tezel, F. & Li, B. Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation. Chem. Eng. J. 358, 1101–1113 (2019).

    CAS 
    Article 

    Google Scholar 

  • Belal, A. S. et al. Superhydrophobic functionalized cellulosic paper by copper hydroxide nanorods for oils purification. Sci. Rep. 11, 1–12 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments. Sci. Rep. 7, 1–7 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Gao, X., Wang, X., Ouyang, X. & Wen, C. Flexible superhydrophobic and superoleophilic MoS2 sponge for highly efficient oil-water separation. Sci. Rep. 6, 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chen, B. et al. Efficient oil–water separation coating with robust superhydrophobicity and high transparency. Sci. Rep. 12, 1–8 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lu, J. et al. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation. J. Membr. Sci. 637, 119624 (2021).

    CAS 
    Article 

    Google Scholar 

  • Ren, G. et al. A superhydrophobic copper mesh as an advanced platform for oil-water separation. Appl. Surf. Sci. 428, 520–525 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhu, X. et al. Superlyophobic graphene oxide/polydopamine coating under liquid system for liquid/liquid separation, dye removal, and anti-corrosion. Carbon N. Y. 190, 329–336 (2022).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y., Zhang, L., Xiao, Z., Wang, S. & Yu, X. Fabrication of robust and repairable superhydrophobic coatings by an immersion method. Chem. Eng. J. 369, 1–7 (2019).

    CAS 
    Article 

    Google Scholar 

  • Wang, J. et al. Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion. Sep. Purif. Technol. 235, 116166 (2020).

    CAS 
    Article 

    Google Scholar 

  • Mohamed, M. E., Mahgoub, F. M., Ragheb, D. M. & Abdel-Gaber, A. M. Novel and facile method for fabrication of robust superhydrophobic film on copper surface and its chemical, mechanical, and corrosion performance. Surf. Eng. https://doi.org/10.1080/02670844.2021.1951502 (2021).

    Article 

    Google Scholar 

  • Mohamed, M. E., Ezzat, A. & Gaber, A. M. A. Fabrication of eco – friendly graphene – based superhydrophobic coating on steel substrate and its corrosion resistance, chemical and mechanical stability. Sci. Rep. 12, 1–15 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mohamed, M. E. & Abd-El-Nabey, B. A. Corrosion performance of a steel surface modified by a robust graphene-based superhydrophobic film with hierarchical roughness. J. Mater. Sci. https://doi.org/10.1007/s10853-022-07325-2 (2022).

    Article 

    Google Scholar 

  • Xu, B. & Cai, Z. Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl. Surf. Sci. 254, 5899–5904 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, C., Wang, F. & Lu, M. Superhydrophobic CuO coating fabricated on cotton fabric for oil/water separation and photocatalytic degradation. Colloids Surfaces A Physicochem. Eng. Asp. 601, 125033 (2020).

    CAS 
    Article 

    Google Scholar 

  • Wan, F., Yang, D. Q. & Sacher, E. Repelling hot water from superhydrophobic surfaces based on carbon nanotubes. J. Mater. Chem. A 3, 16953–16960 (2015).

    CAS 
    Article 

    Google Scholar 

  • Yang, Y. et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric. Appl. Surf. Sci. 503, 144079 (2020).

    Article 
    CAS 

    Google Scholar 

  • Qu, M. et al. Fabrication of superhydrophobic surfaces on engineering materials by a solution-immersion process. Adv. Funct. Mater. 17, 593–596 (2007).

    CAS 
    Article 

    Google Scholar 

  • Ou, J. & Chen, X. Corrosion resistance of phytic acid / Ce (III) nanocomposite coating with superhydrophobicity on magnesium. J. Alloys Compd. 787, 145–151 (2019).

    CAS 
    Article 

    Google Scholar 

  • Mohamed, M. E. & Abd-El-Nabey, B. A. Facile and eco-friendly method for fabrication of superhydrophobic surface on copper metal. ECS J. Solid State Sci. Technol. 9, 061006 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nuraje, N., Khan, W. S., Lei, Y., Ceylan, M. & Asmatulu, R. Superhydrophobic electrospun nanofibers. J. Mater. Chem. A 1, 1929–1946 (2013).

    CAS 
    Article 

    Google Scholar 

  • Hou, W. et al. Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids Surfaces A Physicochem. Eng. Asp. 586, 124180 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zhang, C., Zhang, S., Gao, P., Ma, H. & Wei, Q. Superhydrophobic hybrid films prepared from silica nanoparticles and ionic liquids via layer-by-layer self-assembly. Thin Solid Films 570, 27–32 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saji, V. S. Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation. Adv. Colloid Interface Sci. 283, 102245 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mosayebi, E., Azizian, S. & Noei, N. Preparation of robust superhydrophobic sand by chemical vapor deposition of polydimethylsiloxane for oil/water separation. Macromol. Mater. Eng. 305, 2000425 (2020).

    CAS 
    Article 

    Google Scholar 

  • Seyfi, J. et al. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles. Colloids Surfaces B Biointerfaces 183, 110438 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Contreras, C. B., Chagas, G., Strumia, M. C. & Weibel, D. E. Permanent superhydrophobic polypropylene nanocomposite coatings by a simple one-step dipping process. Appl. Surf. Sci. 307, 234–240 (2014).

    CAS 
    Article 

    Google Scholar 

  • Zhang, J., Zhu, L., Zhao, S., Wang, D. & Guo, Z. A robust and repairable copper-based superhydrophobic microfiltration membrane for high-efficiency water-in-oil emulsion separation. Sep. Purif. Technol. 256, 117751 (2021).

    CAS 
    Article 

    Google Scholar 

  • Rezayi, T. & Entezari, M. H. Achieving to a superhydrophobic glass with high transparency by a simple sol-gel-dip-coating method. Surf. Coatings Technol. 276, 557–564 (2015).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y., Wu, C., Zhu, H. & Zhang, B. Facial fabrication of superhydrophobic ZIF-7 coatings with fast self-healing ability for ultra-efficient emulsion separation. Sep. Purif. Technol. 276, 119272 (2021).

    CAS 
    Article 

    Google Scholar 

  • Wang, S. et al. A robust zirconium amino acid metal-organic framework for proton conduction. Nat. Commun. 9, 1–8 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Gutiérrez-Serpa, A., Pacheco-Fernández, I., Pasán, J. & Pino, V. Metal–organic frameworks as key materials for solid-phase microextraction devices—a review. Separations 6, 1–29 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zare, A., Bordbar, A. K., Razmjou, A. & Jafarian, F. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane. J. Biotechnol. 289, 55–63 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ranjkesh, B. & Taherimehr, M. Application of mesoporous COK-15 metal-organic framework as medication carrier for acetaminophen and clindamycin. Russ. J. Inorg. Chem. 66, 68–77 (2021).

    Article 

    Google Scholar 

  • Bedia, J. et al. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 9, 52 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ghorbani-Choghamarani, A., Bastan, H., Kakakhani, Z. & Taherinia, Z. Preparation of Ni-microsphere and Cu-MOF using aspartic acid as coordinating ligand and study of their catalytic properties in Stille and sulfoxidation reactions. RSC Adv. 11, 14905–14914 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zheng, J. et al. Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage. Chem. Eng. J. 354, 1075–1082 (2018).

    CAS 
    Article 

    Google Scholar 

  • Yoo, Y. & Jeong, H. K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. https://doi.org/10.1039/b800061a (2008).

    Article 

    Google Scholar 

  • Horcajada, P. et al. Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Adv. Mater. 21, 1931–1935 (2009).

    CAS 
    Article 

    Google Scholar 

  • Shekhah, O. et al. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 129, 15118–15119 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ameloot, R. et al. Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 22, 2685–2688 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008).

    CAS 
    Article 

    Google Scholar 

  • Yang, H. M. et al. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferrous Met. Soc. China (English Ed.) 25, 3987–3994 (2015).

    CAS 
    Article 

    Google Scholar 

  • Nadar, S. S., Vaidya, L., Maurya, S. & Rathod, V. K. Polysaccharide based metal organic frameworks (polysaccharide–MOF): A review. Coord. Chem. Rev. 396, 1–21 (2019).

    CAS 
    Article 

    Google Scholar 

  • Lv, Z., Yu, S., Song, K., Zhou, X. & Yin, X. Fabrication of a leaf-like superhydrophobic CuO coating on 6061Al with good self-cleaning, mechanical and chemical stability. Ceram. Int. 46, 14872–14883 (2020).

    CAS 
    Article 

    Google Scholar 

  • Mohamed, M. E. & Nabey, B. A. A. E. Fabrication of durable superhydrophobic / oleophilic cotton fabric for highly efficient oil / water separation. Water Sci. Technol. 83, 90–99 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mohamed, S. A., Chong, S. & Kim, J. Thermal stability of methyl-functionalized MOF – 5. J. Phys. Chem. C 123, 29686–29692 (2019).

    CAS 
    Article 

    Google Scholar 

  • Tummala, S. et al. Formulation and optimization of oxaliplatin immuno-nanoparticles using Box-Behnken design and cytotoxicity assessment for synergistic and receptor-mediated targeting in the treatment of colorectal cancer. Artif. Cells Nanomedicine Biotechnol. 44, 1835–1850 (2016).

    CAS 
    Article 

    Google Scholar 

  • Yan, T. et al. A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation. Chem. Eng. J. 347, 52–63 (2018).

    CAS 
    Article 

    Google Scholar 

  • Xu, L., Liu, Y., Yuan, X., Wan, J. & Wang, L. One-pot preparation of robust, ultraviolet-proof superhydrophobic cotton fabrics for self-cleaning and oil / water separation. Cellulose 27, 9005–9026 (2020).

    CAS 
    Article 

    Google Scholar 

  • Liu, Y., Qu, R., Li, X., Wei, Y. & Feng, L. Applied Surface Science Discarded cigarette butts regenerated hydrophobic-oleophilic materials for both immiscible and emulsi fied oil / water separation through a wettability reversal strategy. Appl. Surf. Sci. 532, 147350 (2020).

    CAS 
    Article 

    Google Scholar 

  • Online, V. A., Ghorbani-choghamarani, A., Taherinia, Z., Bastan, H. & Kakakhani, Z. Preparation of Ni-microsphere and Cu-MOF using aspartic acid as coordinating ligand and study of their catalytic properties in Stille and sulfoxidation. RSC Adv. 11, 14905–14914 (2021).

    ADS 
    Article 

    Google Scholar 

  • Nasresfahani, S., Tashkhourian, J., Shamsipur, M., Zargarpour, Z. & Sheikhi, M. H. Nano fibers of polyaniline and Cu(II)−L-aspartic acid for a room- temperature carbon monoxide gas sensor. ACS Appl. Mater. Interfaces 13, 39791–39805 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Abd-El-Nabey, B. A., Ashour, M., Aly, A. & Mohamed, M. Fabrication of robust superhydrophobic nickel films on steel surface with high corrosion resistance, mechanical and chemical stability. J. Eng. Mater. Technol. 144, 021007 (2022).

    Article 

    Google Scholar 

  • Mohammad, F. Preparation, FTIR spectroscopic characterization and isothermal stability of differently doped fibrous conducting polymers based on polyaniline. Synth. Met. 159, 119–122 (2009).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y., Qu, R., Li, X., Wei, Y. & Feng, L. Applied Surface Science Discarded cigarette butts regenerated hydrophobic-oleophilic materials for both immiscible and emulsi fied oil/water separation through a wettability reversal strategy. Appl. Surf. Sci. 532, 147350 (2020).

    CAS 
    Article 

    Google Scholar 

  • Cooper, S. J., Coogan, M., Everall, N. & Priestnall, I. A polarised m -FTIR study on a model system for nylon 6 6: implications for the nylon Brill structure. Poymer 42, 10119–10132 (2001).

    CAS 

    Google Scholar 

  • Nasresfahani, S., Tashkhourian, J., Shamsipur, M., Zargarpour, Z. & Sheikhi, M. H. Nano fibers of polyaniline and Cu(II)−L-aspartic acid for a room-temperature carbon monoxide gas sensor. ACS Appl. Mater. Interfaces 13, 39791–39805 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Dudley, R. J., Hathaway, B. J., Mulcahy, P. G. H. J. K. & Tomlinson, A. A. The Chemistry Department, University College. Cork, h’eland {Receiced 12 December 1973). 36, 1947–1950 (1974).

  • Botsa, S. M., Ramadevi, D. & Basavaiah, K. A facile synthesis of copper oxide nanorods for photocatalytic degradation of organic pollutant and inactivation of pathogens. J. Nanosci. Technol. 4, 467–470 (2018).

    Article 

    Google Scholar 

  • Rakibuddin, M., Mandal, S. & Ananthakrishnan, R. A novel ternary CuO decorated Ag3AsO4/GO hybrid as a Z-scheme photocatalyst for enhanced degradation of phenol under visible light. New J. Chem. 41, 1380–1389 (2017).

    CAS 
    Article 

    Google Scholar 

  • Karimzadeh, M., Niknam, K., Manouchehri, N. & Tarokh, D. A green route for the cross-coupling of azide anions with aryl halides under both base and ligand-free conditions: Exceptional performance of a Cu2O-CuO-Cu-C nanocomposite. RSC Adv. 8, 25785–25793 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nasresfahani, S., Tashkhourian, J., Shamsipur, M., Zargarpour, Z. & Sheikhi, M. H. Nano fibers of Polyaniline and Cu(II)−L-aspartic acid for a room- temperature carbon monoxide gas sensor. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.1c07116 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Shang, Q. et al. Facile fabrication of superhydrophobic cross-linked nanocellulose aerogels for oil–water separation. Polymers 13, 1–14 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhou, S. et al. Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain. Chem. Eng. 4, 6409–6416 (2016).

    CAS 
    Article 

    Google Scholar 

  • Superhydrophobic_superoleophilic cotton-oil absorbent_ preparation and its application in oil_water separation _ Enhanced Reader.pdf.

  • Parsaie, A., Tamsilian, Y., Pordanjani, M. R., Abadshapoori, A. K. & McKay, G. Novel approach for rapid oil/water separation through superhydrophobic/ superoleophilic zinc stearate coated polyurethane sponges. Colloids Surfaces A Physicochem. Eng. Asp. 618, 126395 (2021).

    CAS 
    Article 

    Google Scholar 

  • Dopamine‐Induced Superhydrophobic Melamine Foam for Oil_Water Separation_Enhanced Reader.pdf.

  • Shi, M., Huang, R., Qi, W., Su, R. & He, Z. Synthesis of superhydrophobic and high stable Zr-MOFs for oil-water separation. Colloids Surfaces A Physicochem. Eng. Asp. 602, 125102 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zhu, X. et al. A versatile approach to produce superhydrophobic materials used for oil-water separation. J. Colloid Interface Sci. 432, 105–108 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xu, L. et al. One-pot preparation of robust, ultraviolet-proof superhydrophobic cotton fabrics for self-cleaning and oil/water separation. Cellulose 27, 9005–9026 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zhou, C. et al. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl. Mater. Interfaces 9, 9184–9194 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, J. & Geng, G. Simple and eco-friendly fabrication of superhydrophobic textile for oil/water separation. Environ. Technol. (United Kingdom) 37, 1591–1596 (2016).

    CAS 

    Google Scholar 

  • Yang, M. et al. Facile preparation of robust superhydrophobic cotton textile for self-cleaning and oil-water separation. Ind. Eng. Chem. Res. 58, 187–194 (2019).

    CAS 
    Article 

    Google Scholar 

  • Tian, N. et al. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation. J. Hazard. Mater. 424, 127393 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, W. et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew. Chemie Int. Ed. 53, 856–860 (2014).

    CAS 
    Article 

    Google Scholar 

  • Zhang, T. et al. Evaluating of the performance of natural mineral vermiculite modified PVDF membrane for oil/water separation by membrane fouling model and XDLVO theory. J. Membr. Sci. 641, 119886 (2022).

    CAS 
    Article 

    Google Scholar 

  • Chen, L. & Guo, Z. A facile method to mussel-inspired superhydrophobic thiol-textiles@polydopamine for oil/water separation. Colloids Surfaces A Physicochem. Eng. Asp. 554, 253–260 (2018).

    CAS 
    Article 

    Google Scholar 

  • Cao, C. et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation. J. Mater. Chem. A 4, 12179–12187 (2016).

    CAS 
    Article 

    Google Scholar 

  • Zhang, W. et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 25, 2071–2076 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 



  • Source link