Origins and characteristics of dissolved organic matter fueling harmful dinoflagellate blooms revealed by δ13C and d/l-Amino acid compositions


  • Heisler, J. et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8, 3–13 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anderson, D. M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manag. 52, 342–347 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Horner, R. A., Garrison, D. L. & Plumley, F. G. Harmful algal blooms and red tide problems on the US west coast. Limnol. Oceanogr. 42, 1076–1088 (1997).

    ADS 
    Article 

    Google Scholar 

  • Kim, D. et al. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 132, 415–423 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Lee, Y. W. & Kim, G. Linking groundwater-borne nutrients and dinoflagellate red tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast. Shelf Sci. 71, 309–317 (2007).

    ADS 
    Article 

    Google Scholar 

  • Lee, Y. W., Kim, G., Lim, W. A. & Hwang, D. W. A relationship between submarine groundwater borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnol. Oceanogr. 55, 1–10 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gobler, C. J., Burson, A., Koch, F., Tang, Y. & Mulholland, M. R. The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae 17, 64–74 (2012).

    CAS 
    Article 

    Google Scholar 

  • Kwon, H. K. et al. Tracing the sources of nutrients fueling dinoflagellate red tides occurring along the coast of Korea using radium isotopes. Sci. Rep. 9, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • Antia, N. J., Harrison, P. J. & Oliveira, L. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30, 1–89 (1991).

    Article 

    Google Scholar 

  • Peers, G. S., Milligan, A. J. & Harrison, P. J. Assay optimization and regulation of urease activity in two marine diatoms. J. Phycol. 36, 523–528 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gobler, C. J. & Sañudo-Wilhelmy, S. A. Temporal variability of groundwater seepage and brown tide blooms in a Long Island embayment. Mar. Ecol. Prog. Ser. 217, 299–309 (2001).

    ADS 
    Article 

    Google Scholar 

  • Mulholland, M. R. et al. Understanding causes and impacts of the Dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuaries Coast. 32, 734–747 (2009).

    CAS 
    Article 

    Google Scholar 

  • Jeong, H. J. et al. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32, 101–130 (2017).

    CAS 
    Article 

    Google Scholar 

  • Kwon, H. K., Kim, G., Lim, W. A. & Park, J. W. In-situ production of humic-like fluorescent dissolved organic matter during Cochlodinium polykrikoides blooms. Estuar. Coast. Shelf Sci. 203, 119–126 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Oh, Y. H., Lee, Y. W. & Kim, T. H. In situ production of dissolved organic carbon (DOC) by phytoplankton blooms (Cochlodinium polykrikoides) in the southern sea of Korea. J. Sea Res. 138, 19–23 (2018).

    ADS 
    Article 

    Google Scholar 

  • Mendoza, W. G., Kang, Y. & Zika, R. G. Resolving DOM fluorescence fractions during a Karenia brevis bloom patch on the Southwest Florida Shelf. Cont. Shelf Res. 32, 121–129 (2012).

    ADS 
    Article 

    Google Scholar 

  • Suksomjit, M., Nagao, S., Ichimi, K., Yamada, T. & Tada, K. Variation of dissolved organic matter and fluorescence characteristics before, during and after phytoplankton bloom. J. Oceanogr. 65, 835–846 (2009).

    CAS 
    Article 

    Google Scholar 

  • Coble, P. G. Marine optical biogeochemistry: The chemistry of ocean color. Chem. Rev. 107, 402–418 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nielsen, T. & Ekelund, N. G. Effect of UV-B radiation and humic substances on growth and motility of Gyrodinium aureolum. Limnol. Oceanogr. 38, 1570–1575 (1993).

    ADS 
    Article 

    Google Scholar 

  • Carlsson, P., Granéli, E., Tester, P. & Boni, L. Influences of riverine humic substances on bacteria, protozoa, phytoplankton, and copepods in a coastal plankton community. Mar. Ecol. Prog. Ser. 127, 213–221 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kwon, H. K., Kim, G., Lim, W. A., Park, J. W. & Park, T. G. Conditions of nutrients and dissolved organic matter for the outbreaks of Paralytic Shellfish Poisoning (PSP) in Jinhae Bay, Korea. Mar. Pollut. Bull. 158, 111381 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jørgensen, L. et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar. Chem. 126, 139–148 (2011).

    Article 
    CAS 

    Google Scholar 

  • Stedmon, C. A., Markager, S. & Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 82, 239–254 (2003).

    CAS 
    Article 

    Google Scholar 

  • Gearing, J. N. The use of stable isotope ratios for tracing the nearshore-offshore exchange of organic matter. In Coastal-Offshore Ecosystem Interactions (ed. Jansson, B.-O.) 69–101 (Springer, 1988).

    Chapter 

    Google Scholar 

  • Lee, S. A., Kim, T. H. & Kim, G. Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes. Biogeosciences 17, 135–144 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jørgensen, N. O., Tranvik, L. J. & Berg, G. M. Occurrence and bacterial cycling of dissolved nitrogen in the Gulf of Riga, the Baltic Sea. Mar. Ecol. Prog. Ser. 191, 1–18 (1999).

    ADS 
    Article 

    Google Scholar 

  • Nagata, T., Meon, B. & Kirchman, D. L. Microbial degradation of peptidoglycan in seawater. Limnol. Oceanogr. 48, 745–754 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dauwe, B. & Middelburg, J. J. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol. Oceanogr. 43, 782–798 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Amon, R. M., Fitznar, H. P. & Benner, R. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46, 287–297 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Davis, J., Kaiser, K. & Benner, R. Amino acid and amino sugar yields and compositions as indicators of dissolved organic matter diagenesis. Org. Geochem. 40, 343–352 (2009).

    CAS 
    Article 

    Google Scholar 

  • Isobe, A. Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves. J. Oceanogr. 64, 569–584 (2008).

    Article 

    Google Scholar 

  • Ichikawa, H. & Beardsley, R. C. The current system in the Yellow and East China Seas. J. Oceanogr. 58, 77–92 (2002).

    Article 

    Google Scholar 

  • Kwon, H. K. et al. Significant and conservative long-range transport of dissolved organic nutrients in the Changjiang diluted water. Sci. Rep. 8, 1–7 (2018).

    Google Scholar 

  • Kako, S. I., Nakagawa, T., Takayama, K., Hirose, N. & Isobe, A. Impact of Changjiang River discharge on sea surface temperature in the East China Sea. J. Phys. Oceanogr. 46, 1735–1750 (2016).

    ADS 
    Article 

    Google Scholar 

  • Lee, C. K., Park, T. G., Park, Y. T. & Lim, W. A. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30, S3–S14 (2013).

    Article 

    Google Scholar 

  • Lee, Y. S. Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea. Mar. Pollut. Bull. 52, 1249–1259 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, J. S., Choi, H. Y., Jeong, H. J., Jeong, J. Y. & Park, J. K. The outbreak of red tides in the coastal waters off Kohung, Chonnam, Korea: 1. Physical and chemical characteristics in 1997. The Sea 5, 16–26 (2000).

    Google Scholar 

  • Kim, G., Lee, Y. W., Joung, D. J., Kim, K. R. & Kim, K. Real-time monitoring of nutrient concentrations and red-tide outbreaks in the southern sea of Korea. Geophys. Res. Lett. 33, L13607 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Mackey, K. R. M., Mioni, C. E., Ryan, J. P. & Paytan, A. Phosphorus cycling in the red tide incubator region of Monterey bay in response to upwelling. Front. Microbiol. 3, 33 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Institute of Fisheries Science (NIFS), Korea.

  • Kim, D. I. et al. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26, 61–66 (2004).

    Article 

    Google Scholar 

  • Zapata, M., Rodríguez, F. & Garrido, J. L. Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29–45 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hansen, H. P. & Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis 3rd edn (eds Grasshoff, K. et al.) 159–229 (Wiley, 1999).

    Chapter 

    Google Scholar 

  • Lawaetz, A. J. & Stedmon, C. A. Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc. 63, 936–940 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997).

    CAS 
    Article 

    Google Scholar 

  • Kim, T. H. & Kim, G. Distribution of dissolved organic carbon (DOC) in the southwestern East Sea in summer. Ocean Polar Res. 32, 291–297 (2010).

    CAS 
    Article 

    Google Scholar 

  • Kim, T. H., Waska, H., Kwon, E., Suryaputra, I. G. N. & Kim, G. Production, degradation, and flux of dissolved organic matter in the subterranean estuary of a large tidal flat. Mar. Chem. 142, 1–10 (2012).

    Article 
    CAS 

    Google Scholar 

  • Lee, S. A. & Kim, G. Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea. Biogeosciences 15, 1115–1122 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lang, S. Q., Lilley, M. D. & Hedges, J. I. A method to measure the isotopic (13C) composition of dissolved organic carbon using a high temperature combustion instrument. Mar. Chem. 103, 318–326 (2007).

    CAS 
    Article 

    Google Scholar 

  • Panetta, R. J., Ibrahim, M. & Gélinas, Y. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance δ13C-dissolved organic carbon in marine and freshwater samples. Anal. Chem. 80, 5232–5239 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dittmar, T., Cherrier, J. & Ludwichowske, K.-U. The analysis of amino acids in seawater. In Practical Guidelines for the Analysis of Seawater (ed. Whul, O.) 67–78 (CRC Press, 2009).

    Google Scholar 

  • Davis, J. & Benner, R. Quantitative estimates of labile and semi-labile dissolved organic carbon in the western Arctic Ocean: A molecular approach. Limnol. Oceanogr. 52, 2434–2444 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jeffrey, S. W., Mantoura, R. F. C. & Bjørnland, T. Data for the identification of 47 key phytoplankton pigments. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (ed. Wright, S.W.) 449–559 (UNESCO, 1997).

  • Cifuentes, L. A. & Eldridge, P. M. A mass-and isotope-balance model of DOC mixing in estuaries. Limnol. Oceanogr. 43, 1872–1882 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fichot, C. G. & Benner, R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 38, L03610 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Biddanda, B. & Benner, R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 42, 506–518 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lee, Y. S. An influence of inflowing freshwater on the diatom blooms in the eastern coast of Dolsan, Yosu, Korea. J. Kor. Soc. Environ. Eng. 24, 19–477 (2002).

    Google Scholar 

  • Lee, Y. S., Park, Y. T., Kim, K. Y., Choi, Y. K. & Lee, P. Y. Characteristics of coastal water quality after diatom blooms due to freshwater inflow. J. Kor. Soc. Mar. Environ. Saf. 12, 75–79 (2006).

    Google Scholar 

  • Del Castillo, C. E., Coble, P. G., Morell, J. M., Lopez, J. M. & Corredor, J. E. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar. Chem. 66, 35–51 (1999).

    Article 

    Google Scholar 

  • Stedmon, C. A. & Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 50, 686–697 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lee, S. A., Lee, J., Han, Y. & Kim, G. Biogeochemical alteration and fluxes of dissolved organic matter and nutrients in coastal bays. Estuar. Coast. Shelf Sci. 245, 106992 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kinsey, J. D., Corradino, G., Ziervogel, K., Schnetzer, A. & Osburn, C. L. Formation of chromophoric dissolved organic matter by bacterial degradation of phytoplankton-derived aggregates. Front. Mar. Sci. 4, 430 (2018).

    Article 

    Google Scholar 

  • Castillo, C. R., Sarmento, H., Alvarez-Salgado, X. A., Gasol, J. M. & Marraséa, C. Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 55, 446–454 (2010).

    ADS 
    Article 

    Google Scholar 

  • Fukuzaki, K. et al. Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton. J. Plankton Res. 36, 685–694 (2014).

    Article 

    Google Scholar 

  • Kwon, H. K., Seo, J., Cho, H. M. & Kim, G. Tracing different freshwater sources for nutrients and dissolved organic matter in coastal waters off Jeju Island using radon. Estuar. Coasts 43, 487–495 (2020).

    CAS 
    Article 

    Google Scholar 

  • Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M. & Marrasé, C. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl. Environ. Microbiol. 77, 7490–7498 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fitznar, H. P., Lobbes, J. M. & Kattner, G. Determination of enantiomeric amino acids with high-performance liquid chromatography and pre-column derivatisation with o-phthaldialdehyde and N-isobutyrylcysteine in seawater and fossil samples (mollusks). J. Chromatogr. A. 832, 123–132 (1999).

    CAS 
    Article 

    Google Scholar 

  • Kaiser, K. & Benner, R. Hydrolysis-induced racemization of amino acids. Limnol. Oceanogr. Methods. 3, 318–325 (2005).

    CAS 
    Article 

    Google Scholar 

  • Kaiser, K. & Benner, R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol. Oceanogr. 53, 99–112 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yan, G., Kim, G., Kim, J., Jeong, Y. S. & Kim, Y. I. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter. Geochim. Cosmochim. Acta 153, 1–14 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kaiser, K., Canedo-Oropeza, M., McMahon, R. & Amon, R. M. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 7, 1–11 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kim, T. H., Kim, G., Shen, Y. & Benner, R. Strong linkages between surface and deep-water dissolved organic matter in the East/Japan Sea. Biogeosciences 14, 2561–2570 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fry, B., Hopkinson, C. S. Jr., Nolin, A. & Wainright, S. C. 13C/12C composition of marine dissolved organic carbon. Chem. Geol. 152, 113–118 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link