Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling


  • Daines, S. J., Mills, B. J. W. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oliver, K. I. C. et al. A synthesis of marine sediment core δ13C data over the last 150000 years. Climates 6, 645–673 (2010).

    Article 

    Google Scholar 

  • Berner, R. A. & Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta 47, 855–862 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hoogakker, B. A. A., Rohling, E. J., Palmer, M. R., Tyrrell, T. & Rothwell, R. G. Underlying causes for long-term global ocean δ13C fluctuations over the last 1.20 Myr. Earth Planet. Sci. Lett. 248, 15–29 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sigman, D. M. & Boyle, E. A. Glacial-interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. M. Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8, 40–43 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hoogakker, B. A. A. et al. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562, 410–413 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schmittner, A. & Somes, C. J. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean’s soft-tissue biological pump. Paleoceanography 31, 669–693 (2016).

    ADS 
    Article 

    Google Scholar 

  • Hoogakker, B. A. A., Thornalley, D. J. R. & Barker, S. Millennial changes in North Atlantic oxygen concentrations. Biogeosciences 13, 211–221 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Goericke, R. & Fry, B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Glob. Biogeochem. Cycles 8, 85–90 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Degens, E. T., Guillard, R. R. L., Sackett, W. M. & Hellebust, J. A. Metabolic fractionation of carbon isotopes in marine plankton – I. Temperature and respiration experiments. Deep Sea Res. 15, 1–9 (1968).

    ADS 
    CAS 

    Google Scholar 

  • Sackett, W. M., Eckelmann, W. R., Bender, M. L. & Bé, W. H. Temperature dependence of carbon isotope composition in marine plankton and sediments. Science 148, 235–237 (1965).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sackett, W. M. A history of the δ13C composition of oceanic plankton. Mar. Chem. 34, 153–156 (1991).

    Article 

    Google Scholar 

  • Laws, E. A., Popp, B. N., Cassar, N. & Tanimoto, J. 13C discrimination patters in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Funct. Plant Biol. 29, 323–333 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dehairs, F. et al. δ13C of Southern Ocean suspended organic matter during spring and early summer: regional and temporal variability. Deep Sea Res. II 44, 129–142 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bentaleb, I. et al. Carbon isotopic fractionation by plankton in the Southern Ocean: relationship between δ13C of particulate organic carbon and dissolved carbon dioxide. J. Mar. Syst. 17, 39–58 (1998).

    Article 

    Google Scholar 

  • Henley, S. F. et al. Factors influencing the stable carbon isotopic composition of suspended and sinking organic matter in the coastal Antarctic sea ice environment. Biogeosciences 9, 1137–1157 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Young, J. N., Bruggeman, J., Rickaby, R. E. M., Erez, J. & Conte, M. Evidence for changes in the carbon isotopic fractionation by phytoplankton between 1960 and 2010. Glob. Biogeochem. Cycles 27, 505–515 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dunbar, R. B. & Leventer, A. Seasonal variation in carbon isotopic composition of Antarctic sea ice and open-water plankton communities. Antarct. J. US 27, 79–81 (1991).

    Google Scholar 

  • Gibson, J. A. E., Trull, T., Nichols, P. D., Summons, R. E. & McMinn, A. Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: a potential indicator of past sea-ice extent. Geology 27, 331–334 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fisher, G., Müller, P. J. & Wefer, G. Latitudinal δ13Corg variations in sinking matter and sediments from the South Atlantic: effects of anthropogenic CO2 and implications for paleo-PCO2 reconstructions. J. Mar. Syst. 17, 471–495 (1998).

    Article 

    Google Scholar 

  • Rau, G. H., Froelich, N., Takahashi, T. & Des Marais, D. J. Does sedimentary organic δ13C record variations in Quaternary ocean [CO2(aq)]? Paleoceanography 6, 335–347 (1991).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hedges, J. I. & van Geen, A. A comparison of lignin and stable carbon isotope composition in Quaternary marine sediments. Mar. Chem. 11, 43–54 (1982).

    CAS 
    Article 

    Google Scholar 

  • Wagner, T. Pliocene-Pleistocene deposition of carbonate and organic carbon at Site 959: paleoenvironmental implications for the eastern equatorial Atlantic off the Ivory Coast/Ghana. In Proc. Ocean Drilling Program, Scientific Results (eds Lohmann, J. & Moullade, M.) 557–574 (Ocean Drilling Program, 1998).

  • Huon, S., Grousset, F. E., Burdloff, D., Bardoux, G. & Mariotti, A. Sources of fine-sized organic matter in North Atlantic Heinrich layers: δ13C and δ15N tracers. Geochim. Cosmochim. Acta 66, 233–239 (2002).

    ADS 
    Article 

    Google Scholar 

  • Zonneveld, K. A. F. et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences 7, 483–511 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Swart, K. A., Oleynik, S., Martinez-Garcia, A., Haug, G. H. & Sigman, D. M. Correlation between the carbon isotopic composition of planktonic foraminifera-bound organic matter and surface water pCO2 across the equatorial Pacific. Geochem. Cosmochim. Acta 306, 281–303 (2021).

  • Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer-Verlag Berling Heidelberg, 2017) 358 pp.

  • Uhle, M. E., Macko, S. A., Spero, H. J., Engel, M. H. & Lea, D. W. Sources of carbon and nitrogen in modern planktonic foraminifera: the role of algal symbionts as determined by bulk and compound specific stable isotopic analyses. Org. Geochem. 27, 103–113 (1997).

    CAS 
    Article 

    Google Scholar 

  • Schiebel, R. & Movellan, A. First-order estimate of the planktic foraminiferal biomass in the modern ocean. Earth Syst. Sci. Data 4, 75–89 (2012).

    ADS 
    Article 

    Google Scholar 

  • King, K. & Hare, P. E. Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera. Micropaleontology 18, 285–293 (1972).

    CAS 
    Article 

    Google Scholar 

  • Robbins, L. L. & Brew, K. Proteins from the organic matrix of core-top and fossil planktonic foraminifera. Geochim. Cosmochim. Acta 54, 2285–2292 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Stott, L. D. Higher temperatures and lower pCO2: a climate enigma at the end of the Paleocene epoch. Paleoceanography 7, 393–404. (1992).

    ADS 
    Article 

    Google Scholar 

  • Kucera, M. Planktonic foraminifera as tracers of past oceanic environments. Dev. Mar. Geol. 1, 213–262 (2007).

    Google Scholar 

  • Ní Fhlaithearta, S., Ernst, S. R., Nierop, K. G. J., de Lange, G. J. & Reichart, G.-J. Molecular and isotopic composition of foraminiferal organic linings. Mar. Micropaleontol. 102, 69–78 (2013).

    ADS 
    Article 

    Google Scholar 

  • Nomaki, H. et al. Degradation of algal lipids by deep-sea benthic foraminifera: an in situ tracer experiment. Deep Sea Res. I 56, 1488–1503 (2009).

    CAS 
    Article 

    Google Scholar 

  • Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maslin, M. A., Hall, M. A., Shackleton, N. J. & Thomas, E. Calculating surface water pCO2 from foraminiferal organic δ13C. Geochim. Cosmochim. Acta 60, 5089–5100 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variations in trophic shifts for stable isotope ratios of carbon, nitrogen, and sulphur. OIKOS 2, 378–390 (2004).

    Google Scholar 

  • Post, D. M. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • Schmittner, A. et al. Biology and air-sea gas exchange controls the distribution of carbon isotope ratios (δ13C) in the ocean. Biogeosciences Fr, 5793–5816 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Müller, P. J., Schneider, R. & Ruhland, G. in Carbon Cycling in the Glacial Ocean: Constraints on the Oceans Role in Global Change (eds Zahn, R., Pedersen, T. F., Kaminski, M. A. & Labeyrie, L.). 343–366 (Springer, 1994).

  • Singer, A. J. & Shemesh, A. Climatically linked carbon isotope variation during the past 430,000 years in Southern Ocean sediments. Paleogeanography 10, 171–177 (1995).

    ADS 
    Article 

    Google Scholar 

  • Tamelander, T. et al. Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Mar. Ecol. Prog. Ser. 310, 33–46 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vogts, A., Schefuß, E., Badewien, T. & Rullkötter, J. N-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions. Org. Geochem. 47, 109–119 (2012).

    CAS 
    Article 

    Google Scholar 

  • Schulte, S., Benthien, A., Müller, P. J. & Rühlemann, C. Carbon isotopic fractionation (ɛp) of C37 alkenones in deep-sea sediments: Its potential as a paleonutrient proxy. Paleoceanography 19, PA1011 (2004).

    ADS 
    Article 

    Google Scholar 

  • Marlowe, I. T., Brassell, S. C., Eglinton, G. & Green, J. C. Long chain unsaturated ketones and esters in living algae and marine sediments. Org. Geochem. 6, 135–141 (1984).

    CAS 
    Article 

    Google Scholar 

  • Marlowe, I. T., Brassell, S. C., Eglinton, G. & Green, J. C. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments. Chem. Geol. 88, 349–375 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wilkes, E. B., Lee, R. B. Y., McClelland, H. L. O., Rickaby, R. E. M. & Pearson, A. Carbon isotope ratio of coccolith-associated polysaccharides of Emiliania huxleyi as a function of growth rate and CO2 concentrations. Org. Geochem. 1991, 1–10 (2018).

    Article 
    CAS 

    Google Scholar 

  • Quay, P. D., Tilbrook, B. & Wong, C. S. Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256, 74–79 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Esposito, M. et al. Application of stable carbon isotopes in a subtropical North Atlantic mescocosm study: a new approach to assess CO2 effects on the marine carbon cycle. Front. Mar. Sci. 6, 616 (2019).

    Article 

    Google Scholar 

  • Cullen, J. T., Rosenthal, Y. & Falkowski The effect of antropogenic CO2 on the carbon isotopic composition of marine phytoplankton. Limnol. Oceanogr. 46, 996–998 (2001).

    ADS 
    Article 

    Google Scholar 

  • Vander Zanden, M. J. & Rasmussen, J. B. Variations in δ15N and δ13C tropic fractionation: implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).

    ADS 
    Article 

    Google Scholar 

  • Smart, S. M. et al. Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea. Geochim. Cosmochim. Acta 235, 463–482 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Benthien, A. & Müller, P. J. Anomalously low alkenone temperatures caused by lateral particle and sediment transport in the Malvinas Current region, western Argentine Basin. Deep Sea Res. I 47, 2369–2393 (2000).

    CAS 
    Article 

    Google Scholar 

  • Sabbatini, A. et al. Biomineralization of Schlumbergerella floresiana, a significant carbonate-producing benthic foraminifera. Geobiology 12, 289–307 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berns, A. E. et al. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur. J. Soil Sci. 59, 540–550 (2008).

    CAS 
    Article 

    Google Scholar 

  • Papadimitriou, E. K. Hydrolysis of organic matter during autoclaving of commingled household waste. Waste Manag. 30, 572–582 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hernandez-Almeida, I., Krumhardt, K. M., Zhang, H. & Stoll, H. M. Estimation of physiological factors controlling carbon isotope fractionation in coccolithophores in photic zone and core-top samples. Geochem. Geophys. Geosyst. 21, e2020GC009272 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vazquez-Riveiros, N. et al. Mg/Ca thermometry in planktic foraminifera: improving paleotemperature estimations for G. bulloides and N. pachyderma left. Geochem. Geophys. Geosyst. 17, 1249–1264 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kast, E. R. et al. Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364, 386–389 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures using foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    ADS 
    Article 
    CAS 

    Google Scholar 



  • Source link